11.7. GeoMesa PySpark¶
GeoMesa provides integration with the Spark Python API for accessing data in GeoMesa data stores.
11.7.1. Prerequisites¶
Spark 2.4.x, 3.0.x or 3.1.x should be installed.
Python 2.7 or 3.x should be installed.
pip or
pip3
should be installed.conda-pack is optional.
11.7.2. Installation¶
The geomesa_pyspark
package is not available for download. Build the artifact locally with the profile
-Ppython
. Then install using pip
or pip3
as below. You will also need an appropriate
geomesa-spark-runtime
JAR. We assume the use of Accumulo here, but you may alternatively use any of
the providers outlined in Spatial RDD Providers.
mvn clean install -Ppython
pip3 install geomesa-spark/geomesa_pyspark/target/geomesa_pyspark-$VERSION.tar.gz
cp geomesa-accumulo/geomesa-accumulo-spark-runtime-accumulo2/target/geomesa-accumulo-spark-runtime-accumulo2_${VERSION}.jar /path/to/
Alternatively, you can use conda-pack
to bundle the dependencies for your project. This may be more appropriate if
you have additional dependencies.
export ENV_NAME=geomesa-pyspark
conda create --name $ENV_NAME -y python=3.7
conda activate $ENV_NAME
pip install geomesa-spark/geomesa_pyspark/target/geomesa_pyspark-$VERSION.tar.gz
# Install additional dependencies using conda or pip here
conda pack -o environment.tar.gz
cp geomesa-accumulo/geomesa-accumulo-spark-runtime-accumulo2/target/geomesa-accumulo-spark-runtime-accumulo2_${VERSION}.jar /path/to/
Warning
conda-pack
currently has issues with Python 3.8, and pyspark
has issues with Python 3.9, hence the explicit
use of Python 3.7
11.7.3. Using GeoMesa PySpark¶
You may then access Spark using a Yarn master by default. Importantly, because of the way the geomesa_pyspark
library interacts with the underlying Java libraries, you must set up the GeoMesa configuration before referencing
the pyspark
library.
import geomesa_pyspark
conf = geomesa_pyspark.configure(
jars=['/path/to/geomesa-accumulo-spark-runtime-accumulo2_${VERSION}.jar'],
packages=['geomesa_pyspark','pytz'],
spark_home='/path/to/spark/').\
setAppName('MyTestApp')
conf.get('spark.master')
# u'yarn'
from pyspark.sql import SparkSession
spark = ( SparkSession
.builder
.config(conf=conf)
.enableHiveSupport()
.getOrCreate()
)
Alternatively, if you used conda-pack
then you do not need to set up the GeoMesa configuration as above, but you
must start pyspark
or your application as follows, updating paths as required:
PYSPARK_DRIVER_PYTHON=/opt/anaconda3/envs/$ENV_NAME/bin/python PYSPARK_PYTHON=./environment/bin/python pyspark \
--jars /path/to/geomesa-accumulo-spark-runtime_${VERSION}.jar \
--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./environment/bin/python \
--master yarn --deploy-mode client --archives environment.tar.gz#environment
At this point you are ready to create a dict of connection parameters to your Accumulo data store and get a spatial data frame.
params = {
"accumulo.instance.id": "myInstance",
"accumulo.zookeepers": "zoo1,zoo2,zoo3",
"accumulo.user": "user",
"accumulo.password": "password",
"accumulo.catalog": "myCatalog"
}
feature = "mySchema"
df = ( spark
.read
.format("geomesa")
.options(**params)
.option("geomesa.feature", feature)
.load()
)
df.createOrReplaceTempView("tbl")
spark.sql("show tables").show()
# Count features in a bounding box.
spark.sql("""
select count(*)
from tbl
where st_contains(st_makeBBOX(-72.0, 40.0, -71.0, 41.0), geom)
""").show()
GeoMesa PySpark can also be used in the absence of a GeoMesa data store. Registering user-defined types and functions
can be done manually by invoking geomesa_pyspark.init_sql()
on the Spark session object:
geomesa_pyspark.init_sql(spark)
You can terminate the Spark job on YARN using spark.stop()
.
11.7.4. Jupyter¶
To use the geomesa_pyspark
package within Jupyter, you only needs a Python2 or Python3 kernel, which is
provided by default. Substitute the appropriate Spark home and runtime JAR paths in the above code blocks. Be sure
the GeoMesa Accumulo client and server side versions match, as described in Installing GeoMesa Accumulo.