17.6. Avro Converter

The Avro parsing library is similar to the JSON parsing library. For this example we’ll use the following Avro schema in a file named /tmp/schema.avsc:

{
  "namespace": "org.locationtech",
  "type": "record",
  "name": "CompositeMessage",
  "fields": [
    { "name": "content",
      "type": [
         {
           "name": "DataObj",
           "type": "record",
           "fields": [
             {
               "name": "kvmap",
               "type": {
                  "type": "array",
                  "items": {
                    "name": "kvpair",
                    "type": "record",
                    "fields": [
                      { "name": "k", "type": "string" },
                      { "name": "v", "type": ["string", "double", "int", "null"] }
                    ]
                  }
               }
             }
           ]
         },
         {
            "name": "OtherObject",
            "type": "record",
            "fields": [{ "name": "id", "type": "int"}]
         }
      ]
   }
  ]
}

This schema defines an avro file that has a field named content which has a nested object which is either of type DataObj or OtherObject. As an exercise…using avro tools we can generate some test data and view it:

java -jar /tmp/avro-tools-1.7.7.jar random --schema-file /tmp/schema -count 5 /tmp/avro

$ java -jar /tmp/avro-tools-1.7.7.jar tojson /tmp/avro
{"content":{"org.locationtech.DataObj":{"kvmap":[{"k":"thhxhumkykubls","v":{"double":0.8793488185997134}},{"k":"mlungpiegrlof","v":{"double":0.45718223406586045}},{"k":"mtslijkjdt","v":null}]}}}
{"content":{"org.locationtech.OtherObject":{"id":-86025408}}}
{"content":{"org.locationtech.DataObj":{"kvmap":[]}}}
{"content":{"org.locationtech.DataObj":{"kvmap":[{"k":"aeqfvfhokutpovl","v":{"string":"kykfkitoqk"}},{"k":"omoeoo","v":{"string":"f"}}]}}}
{"content":{"org.locationtech.DataObj":{"kvmap":[{"k":"jdfpnxtleoh","v":{"double":0.7748286862915655}},{"k":"bueqwtmesmeesthinscnreqamlwdxprseejpkrrljfhdkijosnogusomvmjkvbljrfjafhrbytrfayxhptfpcropkfjcgs","v":{"int":-1787843080}},{"k":"nmopnvrcjyar","v":null},{"k":"i","v":{"string":"hcslpunas"}}]}}}

Here’s a more relevant sample record:

{
  "content" : {
    "org.locationtech.DataObj" : {
      "kvmap" : [ {
        "k" : "lat",
        "v" : {
          "double" : 45.0
        }
      }, {
        "k" : "lon",
        "v" : {
          "double" : 45.0
        }
      }, {
        "k" : "prop3",
        "v" : {
          "string" : " foo "
        }
      }, {
        "k" : "prop4",
        "v" : {
          "double" : 1.0
        }
      } ]
    }
  }
}

Let’s say we want to convert our Avro array of kvpairs into a simple feature. We notice that there are 4 attributes:

  • lat
  • lon
  • prop3
  • prop4

We can define a converter config to parse the Avro:

{
  type        = "avro"
  schema-file = "/tmp/schema.avsc"
  sft         = "testsft"
  id-field    = "uuid()"
  fields = [
    { name = "tobj", transform = "avroPath($1, '/content$type=DataObj')" },
    { name = "lat",  transform = "avroPath($tobj, '/kvmap[$k=lat]/v')" },
    { name = "lon",  transform = "avroPath($tobj, '/kvmap[$k=lon]/v')" },
    { name = "geom", transform = "point($lon, $lat)" }
  ]
}

17.6.1. AvroPath

GeoMesa Convert allows users to define “avropaths” to the data similar to a jsonpath or xpath. This AvroPath allows you to extract out fields from Avro records into SFT fields.

17.6.1.1. avroPath

Description: Extract values from nested Avro structures.

Usage: avroPath($ref, $pathString)

  • $ref - a reference object (avro root or extracted object)
  • pathString - forward-slash delimited path strings. paths are field names with modifiers:
  • $type=<typename> - interpret the field name as an avro schema type
  • [$<field>=<value>] - select records with a field named “field” and a value equal to “value”